Monitor resource contention with Pressure Stall Information
Pressure Gauge
Pressure Stall Information (PSI) is a new feature that gives users a better view of resource contention.
CPU, RAM, and I/O are the three most important computing resources. If these resources are depleted, processes start to fight for them and resource contention scenarios occur. To avoid these problems, it makes sense to monitor precisely what resources applications use in order to correctly dimension the hardware requirements and make optimal use of the existing hardware.
Smartphones can also benefit from this type of monitoring: when resources become scarce, phones often terminate programs in the background in order to offer the foreground application sufficient resources.
Load Average
Most administrators keep an eye on the load average to determine the extent to which a system is exposed to load. The uptime
or top
(Listing 1) commands both display the load average, reading the values from the /proc/loadavg
file. The file contains five values (Line 6). In addition to the three load average values, the fourth value counts the current executable kernel scheduling entities and the fifth shows the process ID of the latest process created.
Listing 1
Load Average
01 $ strace -e file uptime 02 [...] 03 openat(AT_FDCWD, "/proc/loadavg", O_RDONLY) = 4 04 16:17:55 up 3 days, 3:27, 1 user, load average: 0,44, 0,78, 0,64 05 $ more /proc/loadavg 06 0.12 0.26 0.36 2/909 130726
The first three values state the load average for the executable processes, that is, the number of processes with a status of R (for runnable) that are waiting for CPU cycles and those with a status of D (for disk sleep) that are waiting for I/O. The three values show the load average for a period of 1, 5, and 15 minutes.
Few admins actually understand these values, and even the kernel developers don't actually think too much of them (Figure 1) [1].
The brief summary of their findings is: the load average is not useful when it comes to assessing system utilization. The admin can, at most, use the three values to estimate whether a reported performance problem has already been solved because the values become smaller again. However, computing the load average has other disadvantages:
- The admin has to interpret the values relative to the number of threads and CPUs. A value of 128 can be completely acceptable on a 128-thread system. On a 4-threaded system, however, probably nothing will work.
- The value does not tell you how long a process had to wait for resources.
- CPU and I/O are related, which makes it impossible to examine CPU and I/O requirements separately.
- Because the minimum resolution is one minute, the load cannot be observed in real time.
These problems make the load average unsuitable as a metric for admins who need to react quickly to performance events.
PSI
To better identify resource conflicts, and to make it easier to manage overloaded systems at Facebook's data centers, Facebook's kernel team developed Pressure Stall Information (PSI). According to the project's website [2], PSI is a canonical new way to obtain utilization metrics for memory, CPUs, and I/O via the Linux kernel.
Linus Torvalds published the 2018 implementation by Johannes Weiner in Linux 4.20. Weiner is also listed as the PSI maintainer [3]. In Debian 10 "Buster," this functionality is not yet included, but it can be found in Ubuntu from version 19.04 with a Linux kernel as of version 5.0.
Like other common kernel parameters, PSI values are accessed through the /proc
pseudo-filesystem, which acts as an interface to kernel data structures. PSI values appear in three different files within the /proc/pressure
directory:
cpu
– information related to CPU utilizationmemory
– information on the time processes spend waiting due to memory issuesio
– information on the time spent waiting for I/O
Though the three files offer slightly different data, they are organized in a similar way.
CPU
The /proc/pressure/cpu
file contains four values: avg10
, avg60
, avg300
, and total
(Listing 2, Line 2). The values starting with avg*
represent the percentage of processes in the last 10, 60, and 300 seconds that had to wait for CPU resources.
Listing 2
Measuring with cpu
01 $ more /proc/pressure/cpu 02 some avg10=0.02 avg60=0.05 avg300=0.02 total=3990454056 03 [...] 04 $ watch -n ,1 grep -R . /proc/pressure/cpu 05 Every 0.1s: grep -R . /proc/pressure/cpu machine: Mon Jun 8 17:54:34 2020 06 some avg10=0.00 avg60=0.00 avg300=1.07 total=2684388193
Suppose two processes each occupy 100 percent of one thread and run for five minutes on a two-threaded system where nothing else is running. In this case, all three averages are zero, of course, because the processes didn't have to wait. The fact that PSI delivers accuracy to within 10 seconds is an important benefit, because you can react 50 seconds earlier than with the load average.
The last value, total
, also makes a big difference: the total
value specifies the total time in microseconds for which processes had no CPU resources available. You can read this value at any time – about every 500 milliseconds. The difference between two successive values is the number of microseconds in this time interval in which processes had to wait for CPU resources.
This kind of granular resolution was not available previously in the Linux kernel. Thanks to watch
, you can see how the value increases in realtime (Listing 2, Lines 4 to 6), which means you can monitor resource bottlenecks in realtime and, if necessary, kill unimportant processes or migrate them to other systems.
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.
News
-
Wine 10 Includes Plenty to Excite Users
With its latest release, Wine has the usual crop of bug fixes and improvements, along with some exciting new features.
-
Linux Kernel 6.13 Offers Improvements for AMD/Apple Users
The latest Linux kernel is now available, and it includes plenty of improvements, especially for those who use AMD or Apple-based systems.
-
Gnome 48 Debuts New Audio Player
To date, the audio player found within the Gnome desktop has been meh at best, but with the upcoming release that all changes.
-
Plasma 6.3 Ready for Public Beta Testing
Plasma 6.3 will ship with KDE Gear 24.12.1 and KDE Frameworks 6.10, along with some new and exciting features.
-
Budgie 10.10 Scheduled for Q1 2025 with a Surprising Desktop Update
If Budgie is your desktop environment of choice, 2025 is going to be a great year for you.
-
Firefox 134 Offers Improvements for Linux Version
Fans of Linux and Firefox rejoice, as there's a new version available that includes some handy updates.
-
Serpent OS Arrives with a New Alpha Release
After months of silence, Ikey Doherty has released a new alpha for his Serpent OS.
-
HashiCorp Cofounder Unveils Ghostty, a Linux Terminal App
Ghostty is a new Linux terminal app that's fast, feature-rich, and offers a platform-native GUI while remaining cross-platform.
-
Fedora Asahi Remix 41 Available for Apple Silicon
If you have an Apple Silicon Mac and you're hoping to install Fedora, you're in luck because the latest release supports the M1 and M2 chips.
-
Systemd Fixes Bug While Facing New Challenger in GNU Shepherd
The systemd developers have fixed a really nasty bug amid the release of the new GNU Shepherd init system.