(Almost) undetectable hardware-based rootkits
Fourth-Generation Rootkits

We look at the history of the rootkit, including its newest incarnation, the DR RootKit.
Originally, I intended to write an article about the current state of rootkits and the tools that could be used to detect them. But I ran into a slight problem – the more modern rootkits tend to be really good at avoiding detection. By really good, I mean that you're unlikely to detect them unless you take action, such as a detailed analysis of a system memory dump, for example, comparing the actual kernel image with the expected.
History Lesson
Traditional rootkits were relatively simplistic programs, often running as a standalone daemon providing backdoor access. These were generally easy to detect by looking for a new process or newly installed software, which led attackers to start subverting system binaries. In turn, this led to attackers installing modified system binaries, such as hacked versions of OpenSSH that have a hard-coded administrative username and password to get root-level access. With the advent of tools such as Tripwire and the increasingly common use of package managers that can verify the integrity of installed files, such as RPM and dpkg, these became easy to detect [1].
Kernel-Based Rootkits
Soon attackers realized that more sophisticated hiding and subversion methods were needed to control a system, which led to kernel-based rootkits. By modifying the system call table, an attacker can avoid detection easily because, simply put, they control what you are seeing and how your programs are executing.
Typically attackers use one of two methods to modify the system kernel: either loading a malicious kernel module (e.g., heroin) or patching the in-memory kernel by writing to the special device /dev/kmem (e.g., SucKIT). Because these attacks live in memory only, their disadvantage is that they typically do not survive a reboot.
Difficult as they can be to detect, these rootkits can be found by comparing the current system call table with the expected (i.e., by examining the file System.map). Dumps of system memory can be taken and used to verify that the kernel in memory is correct.
So what are attackers to do? Go deeper, of course.
Hardware-Based Rootkits and the Virtualized OS
Released in 2006 at Black Hat in Vegas, the first publicized hardware-based rootkit was called "Blue Pill" [2]. Modern CPU's from AMD and Intel include a number of features that support virtualization of operating systems. Because they no longer need to modify the operating system to work, these rootkits are harder to detect, so checking your system call table won't work. However, these rootkits do replace the Interrupt Descriptor Table (IDT), which is held within a CPU register (the IDTR) [3].
Because two IDTRs (the real one and the one being presented to the compromised operating system) now exist, the one being presented to the compromised operating system will be at a different memory location than usual. Fortunately, the privileged instruction Store Interrupt Descriptor Table (SIDT) can be run from user space and will reliably return the contents of the IDTR being presented to the operating system (which isn't very helpful because it has been compromised) and, more importantly, the memory location (which won't be in the normal location).
This appears to be a stalemate: The attackers have created new methods to hide rootkits, and the defenders have found ways to detect them.
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you've found an article to be beneficial.
News
-
The GNU Project Celebrates Its 40th Birthday
September 27 marks the 40th anniversary of the GNU Project, and it was celebrated with a hacker meeting in Biel/Bienne, Switzerland.
-
Linux Kernel Reducing Long-Term Support
LTS support for the Linux kernel is about to undergo some serious changes that will have a considerable impact on the future.
-
Fedora 39 Beta Now Available for Testing
For fans and users of Fedora Linux, the first beta of release 39 is now available, which is a minor upgrade but does include GNOME 45.
-
Fedora Linux 40 to Drop X11 for KDE Plasma
When Fedora 40 arrives in 2024, there will be a few big changes coming, especially for the KDE Plasma option.
-
Real-Time Ubuntu Available in AWS Marketplace
Anyone looking for a Linux distribution for real-time processing could do a whole lot worse than Real-Time Ubuntu.
-
KSMBD Finally Reaches a Stable State
For those who've been looking forward to the first release of KSMBD, after two years it's no longer considered experimental.
-
Nitrux 3.0.0 Has Been Released
The latest version of Nitrux brings plenty of innovation and fresh apps to the table.
-
Linux From Scratch 12.0 Now Available
If you're looking to roll your own Linux distribution, the latest version of Linux From Scratch is now available with plenty of updates.
-
Linux Kernel 6.5 Has Been Released
The newest Linux kernel, version 6.5, now includes initial support for two very exciting features.
-
UbuntuDDE 23.04 Now Available
A new version of the UbuntuDDE remix has finally arrived with all the updates from the Deepin desktop and everything that comes with the Ubuntu 23.04 base.