Monitor hard disk usage with Go

Signed vs. Unsigned

The Statfs() function returns the remaining disk space in line 64 as uint64, (i.e., as an unsigned 64-bit integer that can never assume a negative value). However, the difference between two of these values can definitely be negative.

If you simply subtract both values from each other, you might be surprised to see that Go (like other languages) returns absolutely insane values for the difference if the subtrahend (the number we're subtracting) turns out to be larger than the minuend (the number we're subtracting from). The result should be negative in this case, but instead you get very large positive values. Without any help, Go assumes that the result of an operation with two unsigned integers is also an unsigned integer. The solution: Typecasting with int(x-y) makes it clear to Go that the result of the difference of two uint64 values x and y is in fact a signed value.

But before line 51 divides the difference by an empirically determined value of 100,000, resulting in a floating point value between   and 1 for the average disk performance, line 48 first needs to convert the result type to float64. Now, if the velocity is greater than 1 or less than -1, the if-else construct from line 53 squashes it into the range between -1 and +1.

All that remains for the main program in Listing 1 to do is to determine the current directory (line 10), start the user interface (UI) (line 17), and close it in any situation with the defer statement in line 18 as soon as the main program stops running.

On the Screen

Listing 2 shows how the program conjures up the UI with the speedometer display in a terminal window using the tried and tested termui project from GitHub. It defines three stacked widgets: a paragraph widget to display the program name Disk Speedo v1.0, a progress bar of the Gauge type, and a pie chart of the PieChart type that forms the speedometer.

Listing 2

ui.go

01 package main
02 import (
03   "math"
04   tui "github.com/gizak/termui/v3"
05   "github.com/gizak/termui/v3/widgets"
06 )
07 type UI struct {
08   Gauge *widgets.Gauge
09   Pie   *widgets.PieChart
10   Head  *widgets.Paragraph
11 }
12
13 func NewUI() *UI {
14   h := widgets.NewParagraph()
15   h.TextStyle.Fg = tui.ColorBlack
16   h.SetRect(6, 1, 30, 2)
17   h.Text = "Disk Speedo v1.0"
18   h.Border = false
19   g := widgets.NewGauge()
20   g.SetRect(2, 2, 28, 5)
21   g.Percent = 0
22   g.BarColor = tui.ColorRed
23   p := widgets.NewPieChart()
24   p.SetRect(-10, 5, 40, 20)
25   p.Border = false
26   p.Data = fract(0)
27   p.AngleOffset = -1.5 * math.Pi
28   return &UI{Gauge: g,
29     Pie: p, Head: h}
30 }
31
32 func (ui UI) Run() chan bool {
33   done := make(chan bool)
34   err := tui.Init()
35   if err != nil {
36     panic("termui init failed")
37   }
38
39   go func() {
40     events := tui.PollEvents()
41     for {
42       select {
43       case e := <-events:
44         switch e.ID {
45         case "q", "<C-c>":
46           done <- true
47           return
48         }
49       }
50     }
51   }()
52   return done
53 }
54
55 func (ui UI) Close() {
56   tui.Close()
57 }
58
59 func (ui UI) Update(
60   level int,
61   speed float64) {
62   ui.Gauge.Percent = level
63   ui.Pie.Colors = []tui.Color{
64     tui.ColorBlack, tui.ColorRed}
65   if speed < 0 {
66     ui.Pie.Colors[1] =
67       tui.ColorGreen
68     speed = -speed
69   }
70   ui.Pie.Data = fract(speed)
71   tui.Render(ui.Head, ui.Gauge,
72     ui.Pie)
73 }
74
75 func fract(
76   val float64) []float64 {
77   num := (1 - val) * 100
78   denom := val * 100
79   return []float64{num, denom}
80 }

The NewUI() constructor from line 13 defines the widgets, including their dimensions, geometric positions, and colored bits, and returns an initialized structure of the UI type (defined in line 7). The main program uses this later to call method-style functions such as Run() (from line 32) and to give them the context of the previously initialized widgets – object orientation Go-style.

Listening on the Channels

The Run() function from line 32 onwards starts the termui interface in a parallel Goroutine from line 39 onwards. Like every UI, it also continuously delivers events such as keystrokes or mouse clicks that need to be intercepted and processed in order to give the illusion of a seamless user interaction.

The infinite loop from line 41 waits with its select statement for the user to press either Q or Ctrl+C. In this case, it sends the value true into a newly created channel, done, to the listening main program, causing it to stop all operations. To do this, the main program simultaneously monitors – in the select statement from line 32 of Listing 1 – whether the UI has reported the end of the program or, alternatively, the ticking seconds timer (Listing 1, line 35) has expired. If the timer has expired, the program moves on to the next round, fetches new values for the disk fill level, and displays them.

In general terms, Listing 2 abstracts the features of the termui library and encapsulates them from the main flow. When it's time to pack up shop, the main program simply calls the Close() function (Listing 2 from line 55) to wrap up the terminal UI, which in turn triggers a Close() call in the termui library.

Buy this article as PDF

Express-Checkout as PDF
Price $2.95
(incl. VAT)

Buy Linux Magazine

SINGLE ISSUES
 
SUBSCRIPTIONS
 
TABLET & SMARTPHONE APPS
Get it on Google Play

US / Canada

Get it on Google Play

UK / Australia

Related content

  • Cave Painter

    While searching for a method to draw geodata right into the terminal, Mike Schilli discovers the wondrous world of map projections.

  • Ready to Rumble

    A Go program writes a downloaded ISO file to a bootable USB stick. To prevent it from accidentally overwriting the hard disk, Mike Schilli provides it with a user interface and security checks.

  • hdparm Drive Utility

    Hdparm is the tool to use when it comes to tuning your hard disk or DVD drive, but it can also measure read speed, deliver valuable information about the device, change important drive settings, and even erase SSDs securely.

  • Progress by Installments

    Desktop applications, websites, and even command-line tools routinely display progress bars to keep impatient users patient during time-consuming actions. Mike Schilli shows several programming approaches for handwritten tools.

  • At a Glance

    Using extensions in Go and Ruby, Mike Schilli adapts the WTF terminal dashboard tool to meet his personal needs.

comments powered by Disqus
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters

Support Our Work

Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.

Learn More

News